Rugalmassá alakították a világ legkeményebb anyagát

hajlékony gyémánt
A hajlékony gyémánt nanotűk sematikus ábrája
Vágólapra másolva!
Hajlékonnyá válik a világ természetben előforduló legkeményebb anyaga, a gyémánt, ha nanoméretű tűkké alakítják - mutatta be felfedezését egy nemzetközi kutatócsoport a Science című tudományos folyóiratban.
Vágólapra másolva!

A Szingapúri Nanjang Technológiai Egyetem (NTU), a Hongkongi Városi Egyetem, az amerikai Massachusettsi Műszaki Egyetem (MIT) szakemberei és más kínai, amerikai, dél-koreai kutatók alkotta csoport elektronmikroszkóp segítségével videón rögzítette valós időben a folyamatot, amely bemutatja, amint az emberi hajszál ezredrészének megfelelő gyémánt nanotűk elhajlanak, és a gumihoz hasonlóan nyúlnak, majd visszatérnek eredeti formájukba.

Felfedezésük utat nyithat gyémántalapú eszközök használata előtt az érzékelésben, az adattárolásban, az optoelektronikában, és az ultraerős nanoszerkezetekben.

Két év kutatás során a szakemberek felfedezték, hogy a néhány száz nanométer átmérőjű, keskeny gyémánttűk 9 százalékkal képesek elhajolni, megnyúlni anélkül, hogy eltörnének.

A szabad szemmel jól látható gyémántkő rugalmassága egy százaléknál is kisebb, hasonlóan más kemény, rideg anyagokhoz, és ha megkísérlik hajlítani őket eltörnek.

A hajlékony gyémánt nanotűk sematikus ábrája Forrás: Yang Lu, Amit Banerjee, Daniel Bernoulli, Hongti Zhang, Ming Dao, Subra Suresh

A gyémánttűket egy speciális folyamatban, az úgynevezett kémiai gőzfázisú leválasztásban (CVD) növesztették, végső alakját maratással alkották meg. A kutatócsoport megmérte, mennyire képes minden egyes tű elhajlani, mielőtt összetörne.

Elvégeztük a mintadarabok részletes számítógépes szimulációját is, és hajlékonysági kísérleteket végeztünk, hogy megmérjük és meghatározzuk, hogy milyen nagy lehet az a nyújtási stressz és terhelés, amelynek a gyémántnanotűk képesek ellenállni anélkül, hogy eltörnének" - idézte Szubra Szuresz, a szingapúri egyetem professzorát az EurekAlert tudományos hírportál.

"Munkánk bizonyította, hogy ami lehetetlen a hagyományos makro- és mikroszkopikus méretekben, az nanoméretben megvalósítható, amikor a teljes mintadarab csak néhány tucat vagy néhány száz atomból áll, és ahol nagy a térfogatarány" - tette hozzá a professzor.