A szupernehéz elemek a fejünk felett vannak

kémiai elemek, priódusos rendszer
Vágólapra másolva!
Az ununpentium felfedezésével a periódusos rendszer VII. periódusa lezártnak tekinthető, ám a sor vége még nyitott. Az uránnál nehezebb elemek furcsa birodalmával a mindennapi életben is találkozhatunk.
Vágólapra másolva!

A 115-ös elem (szabványos ideiglenes nevén ununpentium) előállítását már 2004-ben bejelentette egy dubnai orosz és egy livermore-i amerikai, egymással együttműködő kutatócsoport, a felfedezés elismeréséhez azonban az kellett, hogy egy független laboratórium sikeresen megismételje a kísérletet. Az igazolást idén augusztusban a svédországi Lund Egyetem kutatócsoportja jelentette be. Az ununpentium legstabilabb izotópjainak egyötöd másodperc a felezési ideje, tehát az emberiség által eddig előállított 80 ununpentium atom egyike sincs már meg.

Az ununpentium akkor kap majd végleges nevet, ha további kísérletek is megerősítik a létezését. Két szomszédja a tavaly megerősített és elnevezett 114-es rendszámú livermorium (Lv) és a 116-os rendszámú flerovium (Fl). Ez azonban még nem a periódusos rendszer vége.

Nincs elméleti határ

Mivel eredeti táblázata hiányos volt, a periódusos rendszert megalkotó kémikus, Mengyelejev feltételezte, hogy a rendszer lyukaiba addig még fel nem fedezett elemek kerülnek. Az alumínium és a szilícium alá például az ekaalumíniumot, illetve az ekaszilíciumot javasolta (a szankrit „eka” szó jelentése: „egy”), ezeket ma galliumként és germániumként ismerjük. Mengyelejev az új elemek kémiai tulajdonságaikat is sikeresen megjósolta.

Dimitrij Mengyelejev (balról a harmadik), a periódusos rendszer megalkotója Forrás: AFP/Ria Novosty/Debabov Dmitry

Ma már általánosan elfogadott, hogy a kémiai elemek periódusos rendszere korlátlanul folytatható, az egyre növekvő rendszámú elemek sorának nincs elméleti felső határa.

Az új bejelentéssel a periódusos rendszer a hetedik periódusig (VII) lezártnak tekinthető (lásd az alábbi ábrán). A 117-es rendszámú, átmenetileg ununseptiumnak nevezett elem előállításáról ugyanis már 2010-ben beszámoltak orosz fizikusok.

Forrás: Wikipedia

A sort lezáró, 118-as rendszámú ununoktium létezése azonban még megerősítésre vár. A várakozások szerint ez az elem nemesgázként viselkedne (Mengyelejev ekaradonnak nevezte volna el). Clinton Nash amerikai professzor szerint azonban az ununoktium – ha sikerülne makroszkopikus mennyiségben előállítani – normál hőmérsékleten és nyomáson szilárd, higanysűrűségű nemfém lenne, sok vegyülettel. Eddig hét vagy nyolc ununoktium atommagot állított elő az emberiség, 2002-ben és 2006-ban, azok 0,9 ms felezési idővel elbomlottak. Még elektronokkal "felöltözni" sem volt idejük.

Hol vannak?

A Földön jelenleg a 92-es rendszámú urán a legnehezebb elem a természetben, de van bizonyíték arra, hogy ennél nagyobb rendszámú, úgynevezett transzurán elemek léteztek a geológiai múltban. A gaboni Oklóban például egy olyan „természetes atomreaktort” fedeztek fel, melyben kétmilliárd évvel ezelőtt játszódtak le maghasadásos reakciók, és ennek melléktermékeként transzurán elemek is létrejöttek (de azóta elbomlottak). Neptúnium és plutónium pedig – nyomnyi mennyiségben – ma is keletkezik uránércekben.

Transzurán elemek a mesterséges atomreaktorokban is létrejönnek. A neptúnium, plutónium, amerícium stabilabb izotópjainak (ezek mind alfa-bomlóak) felezési ideje évezredekben, sőt évmilliókban mérhető, reaktorbeli lebomlásuk tehát nem tud lépést tartani keletkezésükkel.

Szupernóva-robbanás maradványa. A robbanás során természetes módon is keletkeznek transzurán elemek Forrás: AFP/NASA



Szupernóvákban, a csillag magjának felrobbanásakor is nagy mennyiségben keletkeznek transzurán elemek. Szupernóvák színképeinek vizsgálatakor kimutattak ameríciumot (rendszáma 95). Az amerikai Burbidge professzor már 1956-ban a 98-as rendszámú kalifornium egyik izotópjának bomlási tulajdonságaival próbálta magyarázni a szupernóvák fénygörbéjének formáját (kaliforniumot először 1950-ben állítottak elő).

Mire jók?

A neptúnium, a plutónium és az amerícium elvileg alkalmas nukleáris fegyver gyártására, mindháromnak van hasadó izotópja. Gazdasági is technológiai okok miatt közülük csak a plutóniumból gyártottak bombát. A Nagaszakira dobott bomba, a Fat man plutónium-239-et tartalmazott (az elem neve után álló szám az atommagjában levő protonok+neutronok száma).

Nagyenergiájú neutronok érzékelésére neptúnium-237-et tartalmazó detektorokat használnak. Az amerícium-241-et füstdetektorokban használják. Ennek az izotópnak a sugárzása ionizálja a detektor lemezei közötti levegőt, ami így vezetővé válik. Ha füst kerül a lemezek közé, a térrészen átfolyó ionáram lecsökken és az érzékelő jelez.

A füstérzékelőben nem mindennnapi elemek vannak Forrás: AFP/Julien Thomazo

Egy ilyen detektor 0,2 mikrogram ameríciumot tartalmaz gyártáskor, ennek fele 432 év alatt bomlik le neptúniumra. Nagyon valószínű, hogy a tisztelt olvasó közelében előfordultak már ezek a transzurán elemek, ha pedig radiográfiával foglalkozik, akkor ez biztosra vehető, mert hordozható gamma sugárzójában is amerícium van. A most elismert ununpentiumot amerícium-243 és kalcium-48 magok ütköztetésével állították elő.

A kűrium-242 és -244 alfa sugárzása még intenzívebb, mivel ezeknek az izotópoknak 163 nap, illetve 18 év a felezési ideje. Oxidjukat radioizotópos termoelektromos generátorban használhatják, Naptól távol küldött űrszondáknak a jövőben kűrium-244 lehet az energiaforrása. Sugárforrásként már eddig is használtak kűrium-244-et, például a Mars Exploration Roverben. Míg az ameríciumból kilónyi mennyiségeket gyártottak le, a kűriumból grammokat.

A berkéliumnak és a többi, nehezebb transzurán elemnek – egyelőre - nincs gyakorlati felhasználása. Ezeket az izotópokat tudományos alapkutatásra, azaz további transzuránok előállítására használják. A kalifornium-252 erős neutronforrás, egy mikrogrammja 139 millió neutront bocsát ki percenként. E tulajdonsága miatt indítóforrásnak használják atomreaktorokban, valamint neutronforrásnak aktivációs analízisnél.

Miért bomlanak a nagyok?

Mint már említettük, a Földön jelenleg a 92-es rendszámú urán a legnehezebb elem a természetben, amely nagyobb mennyiségben is előfordul. Ám az urán is bomlik, és hosszú idő múlva elfogy majd. Ennél azonban gyorsabban bomlanak a transzurán elemek: minél nehezebbek, annál gyorsabban.

Első közelítésben azért nem stabilak a transzurán elemek atommagjai, mert míg az atommagot összetartó magerők rövid hatótávolságúak (csak a szomszédos nukleonok között hatnak), addig a taszító elektromos erők messzire hatnak és összeadódnak. Az úgynevezett Coulomb-taszítás azonban csak protonok között lép fel (a legegyszerűbb hidrogént kivéve nincs is kizárólag protonokból álló mag), így ez a magyarázat megengedné a csupa neutronokból felépülő magok létezését.

A Pauli-elv azonban tiltja az azonos állapotú nukleonokat egy atommagban, így az újabb neutronok csak lazábban kötődhetnek, ami a stabilitás szempontjából kedvezőtlen.

Újabb elméletek szerint azonban elképzelhető, hogy a transzurán elemek birodalmában léteznek úgynevezett stabilitási szigetek, amikor a megfelelő proton-neutron arány esetén viszonylag stabil elemek is létrejöhetnek. A fizikusok szerint a most megerősített ununpentium is egy ilyen szigeten helyezkedik el (további részletekért lásd keretes írásunkat).

A sziget csúcsa

Ha a fentieket figyelembe vesszük, akkor még egy további korrekcióra van szükség. A páros protont és páros neutront tartalmazó magok ugyanis stabilabbak, a páratlan protont és páratlan neutront tartalmazók pedig bomlékonyabbak az itt leírtak szerint előrejelzettnél. Ennek az eltérésnek az abszolút értéke a tömegszám -3/4-edik hatványával arányos. Ha az egyik nukleonból páros számú van, a másikból páratlan, erre a korrekcióra nincs szükség.


Az itt leírt szabályszerűség a teljes magra vonatkozik (a mag teljes lebontásáról szól) és nem árul el semmit a „legkülsőbb” nukleon kötési energiájáról. Erről az derült ki, hogy azok a magok a különösen nehezen „ionizálhatóak”, amelyekre N, Z vagy N+Z értéke 2, 8, 20, 28, 50, 82 vagy 126. A 126-os rendszámú elem tehát várhatóan tartósabb lesz szomszédainál. Ha a neutronszám-protonszám diagramon ábrázoljuk az eddig felfedezett vagy előállított atommagokat, kirajzolódik a „stabilitás szigete”: egy, a környezeténél stabilabb tartomány a 110-es rendszám környékén. Lakói szupernehéz szférikus atommagok. Ez a sziget még nincs teljesen feltérképezve, eddig ismert legmagasabb, azaz legstabilabb pontja a 114-es rendszámú fleorium-289 1,1 perces felezési idővel. A fizikusok úgy sejtik, hogy a most megerősített ununpentium, vagyis ekabizmut egyik izotópja lesz a sziget csúcsa.