Naprendszerünk legnagyobb bolygójának villámait először a Voyager-küldetés űrszondája pillantotta meg, ám ekkor még úgy vélték, ezek az égi jelenségek földi megfelelőikhez hasonlóak, és olyan viharokban keletkeznek, ahol a víz minden halmazállapotban (folyékony, gáz, jég) megjelenik. Ilyen körülmények a Jupiter látható felhői alatt, 45-65 kilométer mélyen vannak, ahol a hőmérő higanyszála éppen csak eléri a 0 Celsius-fokot. A feltételezést erősítették korábbi műholdak megfigyelései is. A Juno műszere azonban a Jupiter sötét oldalán olyan villámokat fedezett fel, amik cáfolják, hogy a planéta elektromos kisülései vízfelhőkben jönnének létre.
A szonda nagyon közel merészkedett a Jupiterhez, így örökíthette meg a megszokottól eltérő kisebb, sekélyebb villámokat. Ezek olyan magasan keletkeztek, amit korábban elképzelhetetlennek tartottak a kutatók.
Heidi Becker, a NASA Sugárhajtású Laboratóriumának (Jet Propulsion Laboratory) munkatársa ugyanakkor kidolgozott egy elméletet, ami magyarázza a fenti megfigyelést. Eszerint a Jupiteren tomboló viharok a vízjég kristályokat a bolygó légkörének magasabb részeire, 25 kilométerre a vízfelhők fölé repítik, ahol ammóniapárával találkoznak. Az ammónia megolvasztja a vízjeget és így új ammónium-víz oldat keletkezik. Ezen a helyen a hőmérséklet rendkívül alacsony - mindössze - 88 Celsius-fok -, ami lehetetlenné teszi a folyékony halmazállapotú tiszta víz létezését.
Ebben a magasságban úgy tekinthetünk az ammóniára, mint fagyásgátlóra, ami lejjebb viszi a víz olvadáspontját, és lehetővé teszi a folyékony ammónium-vízből álló felhők megjelenését"
- magyarázta Becker.
Új állapotában a lezuhanó ammónium-víz cseppek összetalálkozhatnak a felfelé szálló vízjég kristályokkal, az ütközés pedig elektromosan feltölti a felhőket. Ez a megfigyelés hatalmas meglepetés volt számunkra, hiszen ammónium-víz felhők nem léteznek a Földön"
- tette hozzá a kutató.
A sekély villámok alaposabb megismerése a Jupiter légkörének egy másik fontos rejtélyére is fényt deríthet.
A Juno mikrohullámú radiométerének adatai alapján az ammónia a gázóriás atmoszférájának legnagyobb részéből hiányzik. Ennél is megdöbbentőbb volt látni, hogy a légkörben felfelé haladva az ammónia mennyisége változik.
A kutatók az ammónia hiányát nem tudták pusztán az ammónium-víz eső létezésével magyarázni. A szilárd halmazállapotú jégeső viszont jelentős mennyiségű ammóniát tud a légkör mélyebb rétegeibe vinni.
Amikor Heidiék felfedezték a sekély villámokat, egy csapásra nyilvánvalóvá vált, hogy az atmoszféra felső részében az ammónia elegyedik a vízzel, így a villámok kulcsfontosságúak voltak a rejtély megoldásában"
- mondta Scott Bolton, a Juno küldetésének vezetője.
A kásalabdák 2/3 rész vízből, 1/3 rész ammóniagázból állnak. A labdák magja rendszerint ammónia, a belső pépes-jeges rétegek pedig ammónia és víz keverékéből állnak. Ezt az egészet egy vastagabb vízjég burok fogja össze, ami a bolygó légkörében fel-le haladva egyre nagyobbra nő - hasonlóan ahhoz, ahogy a földi jégeső cseppjei keletkeznek.
Ezek a kásalabdák bizonyos idő elteltével annyira nagyra nőnek, hogy a feláramlások már képtelenek magasan tartani őket, végül lejjebb, az atmoszféra melegebb tartományaiba zuhannak, ahol teljesen elpárolognak. A folyamat ammóniát és vizet juttat a Jupiter alsó légköri rétegeibe, ami egyúttal magyarázza, miért lát a Juno műszere csekély mennyiségű ammóniát az atmoszféra felső régiójában.
Az ammónia tehát nem tűnt el, csak álcázza magát, mikor vízzel keveredik. Az ammónium-víz oldat a mélyebb, melegebb rétegekbe esve elpárolog, ezt azonban a műszerek a technikai korlátok miatt már képtelenek észrevenni.
A Jupiter időjárásának megismerésével a Naprendszer többi bolygójának, és az azon túli planétáknak (exobolygóknak) a légköri dinamikája is feltérképezhető lesz.