Másodpercenként 300 000 kilométerről nullára: megállították a fényt<br/>

Vágólapra másolva!
Amerikai kutatók többéves erőfeszítéseit teljes siker koronázta: egy speciális anyag segítségével képesek voltak egy lézersugár megállítására, majd "újraindítására".
Vágólapra másolva!

A fénysebesség a lehetséges legnagyobb sebesség, amely vákuumban 297 000 km/s. A fizikusok már régóta tudják, hogy a fény sebessége csökken, ha olyan átlátszó közegen halad át, mint a víz vagy az üveg. A vákuumban mért fénysebesség és az adott anyagban mérhető fénysebesség hányadosaként megadhatjuk egy anyag törésmutatóját. Közönséges, a fény számára átlátszó anyagokon a fény sebessége nem csökken számottevően, mesterségesen azonban elő lehet állítani ilyen "lassítókat".

A Rowland Tudományos Intézetben (Cambridge, Massachusetts, USA) évek óta kísérleteznek az ún. Bose-Einstein kondenzátummal. Ez a speciális állapotú anyag úgy keletkezik, hogy atomok egy csoportját az abszolút nulla fok közelébe hűtik le (néhány milliárdod fokra megközelítik, mivel elérni lehetetlen). Ennek következtében nagyon nagyszámú atom kerül azonos kvantumállapotba, s ez "szuperhidegre" hűtött atomok egységesen viselkedő csoportját hozza létre. Egy ilyen "szuperatom" igen hatékonyan lassítja a fényt, mivel óriási a törésmutatója.

Dr. Lene Vestergaard Hau (fent) és kutatócsoportja (Harvard University) két évvel ezelőtt 60 km/órás sebességre lassította a fényt, tavaly pedig elérték a 1,6 km/h-ás értéket is: ez utóbbi azt jelenti, hogy az általuk használt kondenzátumban az üveg fénytörésének 100 trilliószorosát mérték.

A legújabb eredményeket azonban már nehéz lesz túlszárnyalni, hiszen sikerült teljesen megállítaniuk a kondenzátumon áthatoló lézersugarat. Hau csoportjától függetlenül dr. Ronald Walsworth és kollégái (Harvard Smithsonian Center for Astrophysics) is ugyanezzel az eredménnyel álltak elő.

A kutatók folyékony hidrogénnel, majd lézeres hűtéssel állították elő a "szuperhideg", néhány millió nátriumatomból álló Bose-Einstein kondenzátumot, amelyet egy mágneses csapda segítségével tartottak egyben. A fény normális esetben nem tudna áthatolni egy ilyen gázanyagon, de lézeres megvilágítással részlegesen átlátszóvá tehető - pontosabban lehetőség nyílik arra, hogy emiatt egy másik, meghatározott tulajdonságú lézersugár keresztülhatoljon rajta.

A kísérlet során mindkét lézersugarat aktiválták, majd a gázt részlegesen átlátszóvá tévő nyalábot hirtelen kikapcsolták, amikor a másik éppen áthatolt az anyagon. Az eredmény: a kondenzátumban haladó fény teljesen leállt. Amikor ismét bekapcsolták a másik lézert, a fény folytatta útját. Bár a jelenség fizikai hátterének pontos magyarázata meghaladja e cikk kereteit, nem arról volt szó, hogy a fény egyszerűen elnyelődött a hideg gázanyagban.

A módszer a jövő komputereinek információtovábbító lehetőségét rejti magában. A ma még csak elméletben létező kvantumkomputerek lényegi tulajdonsága, hogy az információkat egyes atomok és részecskék különböző kvantumállapotában tárolják. Ilyen részecskék lehetnek például a lézersugár fotonjai, amelynek haladási sebességét most már szélsőségesen is befolyásolni lehet.

A kutatók eredményei a Nature, illetve a Physical Review Letters tudományos szaklapok legfrissebb számában jelentek meg.

Ajánló: